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Computer simulation studies of anisotropic systems 
XXII. An equimolar mixture of rods and discs: a biaxial nematic? 
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Department of Chemistry, University of Southampton, Southampton SO9 5NH, 

England 

F. PRATA and S .  ROMANO 
Department of Physics, University of Pavia, I 27100 Pavia, Italy 

(Received 26 March 1993; accepted 18 May  1993) 

In principle, binary mixtures of rod-like and disc-like particles should exhibit a 
biaxial nematic phase, but in practice phase separation into two uniaxial nematic 
phases prevents this. Here, we report the results of a computer simulation study of 
an equimolar mixture of rods and discs in which phase separation is not allowed. 
The particles are confined to the sites of a simple cubic lattice in which each rod is 
surrounded by six discs and vice versa. Neighbouring particles interact such that 
they prefer to align with their respective symmetry axes orthogonal to each other. In 
contrast, the interaction between next nearest neighbours, which are either rods or 
discs, is such that their symmetry axes tend to be parallel. Monte Carlo simulations 
of this model mixture show that an orientationally ordered phase exists at low 
temperatures. This nematic phase has overall uniaxial symmetry and the particles 
have a negative second rank orientational order parameter, indicating that they 
tend to align at right angles to the director. The two interpenetrating sub-lattices 
containing either rods or discs, however, exhibit a biaxial nematic phase. The results 
of the simulation are found to be in reasonable agreement with the predictions of a 
molecular field theory for this model mixture. We have also investigated the 
behaviour of this mixture when the rods and discs are allowed to exchange between 
their lattice sites. The mixture is found to separate into two uniaxial nematic phases 
composed essentially of either rods or discs, as expected. 

1. Introduction 
The constituent molecules of virtually all thermotropic nematogens depart from the 

high symmetry often assumed for them and yet the resulting nematic phase is non-polar 
and usually possesses cylindrical symmetry. This observation together with the 
elongated form of most nematogenic molecules has often prompted theoretical 
analyses to assume that the particles have Dmh symmetry. Nonetheless, departure of 
the molecules from such symmetry can have important consequences for their liquid 
crystalline behaviour, as various theoretical treatments have demonstrated. Perhaps 
the most dramatic prediction is the existence of a biaxial nematic phase which can be 
formed directly from the isotropic or, for molecules with a smaller deviation from 
cylindrical symmetry, from the uniaxial nematic phase. This general behaviour has 
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284 R. Hashim et al. 

been predicted by a variety of molecular field theories C1-51 originating with the 
seminal work of Freiser [ 11; these predictions have also been confirmed by the results of 
computer simulaton studies of particles with D,, symmetry interacting via attractive 
[6] as well as purely repulsive forces [7]. Experimentally, biaxial nematic phases have 
been found for several lyotropic phases [8], but the situation is far less clear for 
thermotropic nematics. Several claims have been made to have discovered such a 
biaxial nematic phase [9], but evidence to substantiate these claims has not always 
been forthcoming [lo]. 

An alternative route to the formation of the elusive biaxial nematic phase was 
proposed many years ago by Alben [l 11 and this is to mix both rod-like and disc-like 
particles. There are several predictions of the phase diagram to be expected from this 
binary mixture and the existence of a biaxial nematic is clearly observed for molecular 
field theories [ll], hard particle systems [12,13] and a van der Waals approach [14]. 
However, it was subsequently noted by Palffy-Muhoray and his colleagues that, on 
thermodynamic grounds alone, such mixtures should separate into two uniaxial 
nematic phases, one rich in discs and the other in rods [IS]. This expected behaviour 
has been observed in a computer simulation study of a binary mixture of rod-like and 
disc-like particles [I61 and also for a real mixture of calamatic and discotic mesogens, 
although the phase diagram here is somewhat more involved than that predicted [ 171. 
It is, of course, possible to inhibit phase separation if the scalar interaction between 
unlike particles is sufficiently larger than the geometric mean of the scalar interactions 
between like particles [18]. The molecular engineering necessary for the creation of 
molecules with these particular properties has yet to be achieved. However, an 
alternative route is to use a computer simulation of a model system in which the 
constituent particles are not able to migrate and so the formation of a phase separated 
sample is prevented. 

Here we report a Monte Carlo simulation study of such a model mixture of rods and 
discs. The nature of the model is described in the following section and a molecular field 
theory for this is given in $ 3. The computational details of the simulation are listed in 
0 4, together with the properties used to characterize the phases and their structures. We 
also wished to see if the model mixture would undergo phase separation and the 
procedures used to allow translational motion of the particles are described in this 
section. Our results are gathered in Q 5 where contact is made with the predictions of the 
molecular field theory, as well as with the results of simulation studies of related model 
systems. The main conclusions of our investigation are given in $6.  

2. The model mixture 
To achieve a homogeneous phase, the particles, rods and discs, are confined to the 

sites of a simple cubic lattice. Each site, k ,  is characterized by dimensionless site 
coordinate x, which have been scaled by the lattice parameter. The simple cubic lattice 
is bipartite, that is it consists of two interpenetrating sub-lattices which are defined as 
follows: for each lattice site the parameter il, is equal to 1 depending on whether the 
sum of the coordinates xk is even or odd. The two sub-lattices consist of nodes with the 
same parity; each lattice node is surrounded by six nearest neighbours belonging to the 
other sub-lattice and then by the twelve next nearest neighbours belonging to the same 
sub-lattice and so on. The opportunity for the observation of phase biaxiality is clearly 
maximal when the rods occupy one sub-lattice and the discs the other; we have, 
therefore, confined our attention to this equimolar mixture. 
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Computer simulation of a mixture of rods and discs 285 

Lattice models have proved to be valuable for enhancing our understanding of 
liquid crystals since the pioneering study by Lebwohl and Lasher [19]. In this, only 
nearest neighbours were allowed to interact and then via the continuous soft potential 

uij= 4J2(Qi*Qj), (1) 

where Q i  is a unit vector defining the orientation of the molecular symmetry axis. The 
strength parameter 6 is positive and sets the temperature scale; T* = k,T/t .  The model 
exhibits an orientational orderdisorder transition which has been identified as a 
nematic-isotropic transition. Indeed, many of the properties of the system are found to 
have much in common with those of real nematics [19-221. 

Within this model, it is not possible to distinguish between rod-like and disc-like 
particles since the potential is equation (1) will force both to align with their symmetry 
axes parallel. In an equimolar mixture in which the rods occupy the sites of one sub- 
lattice and the discs those of the other, such a distinction is possible, for only unlike 
particles are nearest neighbours and these interact so that their symmetry axes tend to 
be orthogonal. This can be achieved by simply replacing the minus sign in the 
Lebwohl-Lasher potential by a plus, 

u i j = € P 2 ( Q i .  Qj ) .  (2) 
Such a system has been considered by Kohring and Shrock [23] who found evidence 
for an ordering transition at T* of 0.65+0.05. In the low temperature phase the 
particles on the two sub-lattices are orientationally ordered, although the nature of this 
order is not clear and neither is it apparent if the two sub-systems have biaxial order. 
Part of this problem stems from the fact that the potential does not influence the 
ordering of particles on the same sub-lattice directly. All that is required in the ground 
state is that the neighbouring particles on the two sub-lattices are orthogonal; as 
Kohring and Shrock noted [23] this can be achieved by many configurations. 

To overcome this difficulty we had previously modified the potential for rods and 
discs by the addition of a term for the like next nearest neighbours such that they align 
with their symmetry axes parallel [16]. This potential takes the form 

Uij=t  f(r)P2(Qi-Qj), (3) 
where r = Ixi - xjl and the functionf(r) is assigned the value 1 for nearest neighbours and 
-1/8 for next neighbours. This latter value results because we assume that the 
interaction decays as r - 6  [16], in keeping with the Lennard-Jones 12-6 potential for 
atomic systems. This variation in the sign can be accommodated using the ik 
parameters by writing the potential as 

U i j =  - - - ~ [ ~ [ ~ l f ( r ) l P ~ ( Q ~ *  Oj) .  (4) 
We expect that with this model, over a certain temperature range, molecules in the sub- 
lattices will align with their symmetry axes parallel, but that particles in different sub- 
lattices will tend to have their symmetry axes orthogonal. In defining the potential we 
have used a single energy parameter to control the anisotropic interactions between 
both unlike and like particles. Of course, the like interactions differ in magnitude from 
those for unlike particles because of their greater separation; our assumption 
concerning the nature of this distance dependence can be viewed as introducing a 
difference between like and unlike interactions. In principle, we could also have 
employed separate parameters for the rod-rod and disc-disc interactions, but this 
appears to be an unnecessary complication of our model and without any apparent 
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286 R. Hashim et al. 

benefits. We can now speculate on the nature of the orientational ordering in the 
ground state and at low temperatures. It is convenient to introduce three unit vectors 
Ql, Q, and Q,, which can be identified with the lattice axes without any loss of generality 
because of the independence of the potential on the interparticle vector. In the ground 
state all of the particles in the even sub-lattice (say) point along 6 ,  and particles in the 
odd sub-lattice point along 4,. The Q3 direction is then not populated and the (Q1 e,) 
plane contains the symmetry axes of both the rods and the discs. As the temperature is 
increased, this picture is not expected to change significantly; 8, will be sparsely 
populated while 6, 6, will contain the bulk of the symmetry axes. Such organization 
suggests a global order with the director along Q, and with the symmetry axes of both 
rods and discs orthogonal to it. In the limit of perfect order, the usual second rank 
orientational order parameter P,  should be -4 while the fourth rank order parameter 
should be 3/8. More importantly, given our decision to make the interactions between 
like particles equivalent, the overall symmetry of the equimolar mixture is expected to 
be uniaxial. In constrast, the particles on a neighbouring sub-lattice will reduce the 
symmetry of the molecular environment on the other sub-lattice and so introduce a 
local phase biaxiality. 

It is also of some interest to study the ability of this system to undergo phase 
separation, and so we have relaxed the condition of retaining the rods and discs on 
separate sub-lattices. Under these conditions it is necessary to modify the pair potential 
for like andunlike particles irrespective of whether they are nearest neighbours or next 
nearest neighbours. To achieve this the pair potential is written as 

uij= -clf(r)IP,(Qi. aj), ( 5 )  

ui j= t l f ( r ) lPz (a i .  Q j )  (6)  

for like particles and 

for unlike particles where, as before, the interaction strength is taken to decay as r - 6  
and the interaction is restricted to nearest and next nearest neighbour particles [16]. 

In the remainder of the paper we shall refer to the homogeneous or uniform system 
of rods and discs as model I and to the system where the particles can exchange between 
sites as model 11. 

3. The molecular field theory 
Here we present the molecular field theory for the model mixture of rods and discs 

defined in the previous section. Our starting point is the pair potential in equation (3) 
which gives the interaction energy of say a rod with a neighbouring disc and then with a 
next nearest neighbour which is a rod. Given the symmetry of the model, there is an 
entirely analogous expression for a disc interacting with a rod as its nearest neighbour 
and another disc as its next neighbour. The potential of mean torque for a rod is 
obtained by averaging the pair potential over the shells of surrounding molecules and 
over their orientations. This is achieved by writing the second Legendre polynomial, in 
equation (3), in terms of the orientations of the individual molecules using the spherical 
harmonic addition theorem 

m 

The C,,(w) are modified spherical harmonics and oi denotes the spherical polar angles 
of the symmetry axis of particle i in the laboratory frame. This frame is defined with the 
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Computer simulation of a mixture of rods and discs 287 

major director for the rod sub-system along the z axis and that for the discs along the 
y axis. Within the context of our previous discussion, z would correspond to Q, and y 
to 62. 

The single particle potential for a rod is then 

where the factor of 6 results from the number of nearest neighbours and (3/2) is a 
combination of 12 from the number of next nearest neighbours and the reduction of the 
interaction by 1/8. The averages cm and Gm are the orientational order parameters 
for rods and discs, respectively, expressed in a common laboratory frame. The frame 
which we have chosen corresponds to the principal axis system for the nematic phase 
formed on each sub-lattice and so the order parameters with m =  1 vanish. In 
addition, the components with m equal to & 2 are real and identical. Given these results, 
the potential of mean torque can be written as 

UR(@) = €[6e - (3/2)E]P,(COS p) 
+ t[ 12(d f, cos 2 ~ ) ~  - 3(d I. cos 201)R]di0(P) cos 201, (9) 

where d;,(B) is a small Wigner rotation matrix. This expression involves the ordering 
tensor for both the rods and the discs, but for our model, with its equivalence of these 
particles, there is a simple geometric relationship between the two tensors. This is most 
easily seen in terms of the Cartesian Q tensors describing the orientational order of the 
molecular symmetry axes in the laboratory frame 

and 

For the rods, the major director is along the z axis, while for the discs it is along y ;  thus 

Q:= = QFy (12) 

QFy = QFz (13) 

Q& = Q:x. (14) 

Similarly 

and 

We can now see that, although the Q tensors for particles on the two sub-lattices have 
biaxial symmetry, the entire mixture has uniaxial symmetry with principal components 
Q:x, (QFy + Q:J2 and (Q,", + QFy)/2. The overall uniaxial symmetry of the phase has 
resulted from our decision to treat the anisotropic interactions between rods and 
between discs as identical. 
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288 R. Hashim et al. 

and 

The irreducible form of the ordering tensor is related to the Cartesian tensor via 
pR - QR 

2 -  22 

We can now write the potential of mean torque for a rod as 

U,(W) = C[UP,(COS P)  + 2bd;,(j) cos 2a], (1 7) 
where the coefficients a and b are related to the components of the ordering tensor by 

a = ( 3 / 2 ) e  + 3J6(di0 cos 2 ~ ) ~ ,  

b= J3/8G +(3 - J 3 / 8 ) ( ~ i ; ~  cos 21x)~. (19) 
The order parameters are then obtained by solving the consistency equations 

P': = 27-cZ-l P,(cos ~)Zo[2~bd:,(P)/k,T] exp [ta/k,T)P,(cos p ) ]  sin fld P, (20) s: 
(die cos 2 ~ ) ~  = 2712- ' d;,(P)I,[2~bd:,(P)/k,T] exp [(~a/k,T)P,(cos P ) ]  sin pd B, (21) 

where the orientational partition function is 

Z =  2n IO[2~bd;,(fi)/k,T] exp [(ca/k,T)P,(cos p)] sin pd p. (22) 1: 
Here 1,[2cbd;,(P)/k,T] is an nth order modified Bessel function. These forms for the 
order parameters ensure that the orientational Helmholtz free energy 

A = - ( c / 2 ) [ a e  + 2b(d;, cos - k,T In (23) 
is a minimum with respect to fluctuations in the order parameters. 

The form of the potential of mean torque has much in common with that predicted 
by molecular field theory for a biaxial particle in a uniaxial nematic phase [24]. 
However, in this theory it is possible to make a further approximation which results in 
the ratio b/a being independent of the orientational order and this facilities the solution 
of the consistency equations. Such an approximation is not possible for the binary 
mixture considered here, and so the consistency equations (20) and (21) were solved 
numerically. Solutions to the two non-linear equations were found for a given scaled 
temperature k,T/c by using a NAG library minimization routine E04CCF which 
employs the SIMPLEX N + 1 points method. The order parameters were observed to 
decrease with increasing temperature and to vanish simultaneously and continuously 
at T* of 1.5. Evaluation of the orientational free energy using these order parameters 
shows that the transition from the biaxial nematic phase to the isotropic phase is 
predicted to be second order and to occur when T* is 1.5. We shall make contact with 
this and other predictions of the molecular field theory when we consider the results of 
our computer simulation studies. 

4. Computational aspects 
The Monte Carlo simulations were performed using standard periodic boundary 

conditions and sample sizes of lo3 and 163 particles for model I and lo3 for model 11; 
our reasons for using a larger sample for model I will become apparent shortly. 
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Computer simulation of a mixture of rods and discs 289 

Random rotations were attempted on randomly selected particles with the aid of the 
Barker-Watts algorithm [25]. In addition, for model I1 we introduced a move with 
which to exchange particles; this was chosen to be implemented with a probability p ,  
where p is an input parameter and determines the fraction of moves (1 - p )  in which an 
attempt is made to change the orientation of a particle. The equilibrium runs took 
typically 5000 cycles, where one cycle or sweep corresponds to a number of attempted 
moves equal to the number of particles in the sample. The production runs took up to 
250 000 cycles especially near the phase transition; the sub-averages which were 
employed to evaluate the statistical errors were calculated over macrosteps consisting 
of 250 cycles. 

The exchange routine necessary for model I1 can be implemented in a variety of 
ways, each of which is consistent with microscopic reversibility. These methods include 

(a)  selecting a pair of unlike particles at random, 
(b) choosing a pair of nearest neighbours at random, 
(c) choosing a pair of nearest neighbours or next nearest neighbours at random, 
( d )  selecting a pair of particles at random. 

The last three procedures include the possibility of exchanging like particles, in contrast 
to the first method. The four methods were tested over a wide range of scaled 
temperatures (T* =02, 0.4, 0.6, 0.8, 1.0 and 1.25); they were found to give the same 
results for the major order parameter of the total mixture and of the biaxial 
components, to within the statistical error. However, at low temperatures, method (b) 
was found to be slow to converge, and in practice we have used procedure (a)  which 
selects a pair of unlike particles for all of the temperatures [26]. 

To facilitate the simulations, the configuration at the end of the equilibrium stage 
was used to start both the production run at that temperature and the equilibrium stage 
at the next temperature. The starting configuration for model I was the ground state 
configuration with the symmetry axes of the discs pointing along the x axis of the 
simulation box and those for the rods aligned along the y axis. For model 11, where we 
wished to explore the possibility of phase separation, three different starting 
configurations were employed. These were 

(i) a random mixture of the rods and discs on the lattice; 
(ii) a homogeneous mixture, that is, with the rods on one sub-lattice and the discs 

(iii) a layered arrangement in which the rods occupy the lattice sites in one half of 
on the other; 

the simulation box and the discs occupy the other half. 

Even at the lowest temperatures the mixed configurations (i) and (ii) converged within a 
few thousand cycles to a phase separated mixture, in agreement with a previous 
simulation study [16]. 

The configurational heat capacity, which is important in locating any phase 
transitions, was evaluated from the fluctuations in the potential energy as well as by 
fitting the temperature dependence of the internal energy to a cubic spline. In addition 
our procedures were checked by using a polynomial fit to O*. 

The extent of the orientational order of the total mixture and of the individual 
components was evaluated at both the second and fourth rank level. The second rank 
orientational order parameter was evaluated from the (2 tensor 
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290 R. Hashim et al. 

introduced by Vieillard-Baron [27]. The fourth rank order parameter comes from the 
analogous quantity [22] 

Blpvp  = { 350AQ,QvGp - 5[6,,,3$,, + d,,,,Gv 
- - -  

+ 6,,Q,QP + 4 , Q , Q V  + L Q , Q ,  + da,QvQpI + 82 ,dvp  + 4&Ip + d a p d , v P .  (25) 

In both cases, the Greek subscripts refer to Cartesian components of the various tensors. 
These quantities were originally formulated to deal with the observation that, during a 
computer simulation, the main director, as well as the minor director for biaxial 
systems can change their orientation within the simulation box. In order to allow for 
this, the Q tensor is averaged over a number of cycles, selected so that the director 
orientation does not change. It is then diagonalized, which is equivalent to a 
tranformation from the frame fixed in the simulation box to the director frame and the 
eigenvalues are averaged over the production stage of the simulation. For a uniaxial 
phase formed from a single component, this procedure presents few problems, for the 
largest eigenvalue is readily identified as the order parameter for the system and can be 
averaged during the simulation. 

The situation is not so straightforward for the binary mixture which we have 
studied, first, because it is necessary to define order parameters for the two components 
as well as for the entire system; secondly and more importantly, we need to allow for 
fluctuations in the orientations of the major and minor directors for both the global 
system and the individyal components. To illustrate the problems, we consider the 
second rank orderin/g.fensor Q"." obtained for the mth macrostep and for the system s 
where this label denotes the entire mixture (s = 3) or just the rods (s = 1) or discs (s = 2). 
The eigenvalues of this Q tensor are denoted by 42" and the associated eigenvectors are 
v2". To simplify the notation, we label the three eigenvalues as qk; the problem is to 
decide which of these eigenvalues should be averaged over the various macrosteps. As 
we have indicated, there is no difficulty for the major order parameter, for we simply 
select the largest eigenvalue, except perhaps in the isotropic phase where this procedure 
necessarily overestimates the orientational order [28]. The real difficulty arises when 
we come to average the other two eigenvalues, for there are two extreme ways in which 
this might be achieved. First, we could reorder the eigenvalues such that 1q31 2 1q21 2 lqll 
which would have the effect of artificially enhancing the biaxiality of the phase (qz - ql). 
This might be expected to be a problem if the phase was uniaxial, but the method has 
been applied to systems where phase biaxiality is observed and no difficulties appear to 
have arisen [6,7]. Of course the magnitude of the spurious biaxiality in Q will depend 
on the size of the system and should be relatively small for the number of particles 
usually studied. Secondly, at the other extreme, we could order the two remaining 
eigenvalues at random, which would have the effect of reducing the phase biaxiality. In 
an attempt to avoid the bias of either of these two extremes we have considered the 
following alternatives for the reordering of the eigenvalues of Q * v s .  

(a) The eigenvalues were reordered via an even (or an odd) permutation such that 

(b) An even (or odd) permutation of the eigenvalues is used to give 1q31 lqll and 
1q31 2q21. However, for normal nematics, q3 is positive and so here this method 
would be equivalent to (a). 

(c) The previous methods were motivated by the aim to have some unbiased 
ordering of the eigenvalues of the Q tensor from one macrostep to the next. 

q 3 2 q 1  and q 3 2 q Z .  
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Computer simulation of a mixture of rods and discs 29 1 

However, a more physical approach to the problem is also possible and that is 
to assume that the director orientation should not change significantly between 
macrosteps. Thus at the end of the mth macrostep, we look at the eigenvectors 
v;"' and associate them with the eigenvalues from the previous macrostep 
,,;m-l to which they are closest orientationally. Equivalent eigenvalues are 
then assigned to the equivalent eigenvectors. This assignment was achieved by 
forming the sum of scalar products 

and selecting the labels k for the eigenvectors for the mth macrostep from the six 
possible combinations such that Qs*'" is a maximum. To apply this procedure 
we need simply to assign the labels to the eigenvalues for the first macrostep, 
and we can do this, without loss of generality, using procedure (a). After 
reordering the eigenvalues during the production stage and performing the 
necessary averages we obtained the major order parameters and the biaxial 
order parameter 111-6 for the total system as well as for the individual 
components. 

During the simulation, the three methods used to order the eigenvalues were compared. 
For model I, procedures (b) and (c)  were found to give essentially the same results, both 
qualitative and quantitative, for the total system for all temperatures within the 
ordered phase. That is the second rank order parameter for the mixture is negative and 
the phase has uniaxial symmetry. For the two components on their individual sub- 
lattices there is a low temperature range where the eigenvalue largest in magnitude is 
positive, the two sub-lattices are biaxial and the major directors are orthogonal. In 
addition, there is a high temperature range (T* 20.7), where the eigenvalue largest in 
magnitude can have either sign; this corresponds to a system with maximal phase 
biaxiality so that the major and biaxial order parameters are simply equal and opposite 
in sign. In this regime, method (b), which uses the magnitude, but not the signs of the 
eigenvectors, failed although methods (a)  and (c) gave results in more or less good 
agreement. We shall return to this unexpected and fascinating behaviour of the 
particles on the sub-lattices in the following section. 

For model 11, the three methods gave the same result for both the rod and disc 
components, that is uniaxial phases with positive second rank order parameters. The 
symmetry of the total mixture was also found to be uniaxial, although now the overall 
second raak order parameter is negative, and so method (b) cannot be employed for this 
system; the remaining two methods gave identical results. 

The fourth rank orientational order parameter was evaluated from the B tensor in 
the following way [22]. At the end of each macrostep, the eigenvectors associated with 
the reordered eigenvalues define the column vectors of an orthogonal matrix A. This is 
then used to transform B into the director frame and the diagonal element B,,,, is then 
averaged over the production run and identified with F4. This procedure was used to 
determine P4 for the two components in model I, as well as for the total mixture. The 
values obtained were found to be rather insensitive to the choice of reordering 
procedure used, which is perhaps to be expected, because we are only concerned with 
the major fourth rank order parameter and not in the departure of this ordering tensor 
from cylindrical symmetry. 
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The orientational correlations were also investigated for model I via the second and 
fourth rank correlation functions which are defined by 

GL(r) = P,(fii. fijh (27) 
where Lis 2 or 4. The average is evaluated for pairs of particles i and j separated by 
r =  / x i - x i / .  The results are shown as functions of r2 rather than r,  since this has the 
advantage that even values of r2 belong to sites on the same sub-lattice, whereas odd 
values correspond to sites on different sub-lattices. The behaviour of these orient- 
ational correlation functions for particular limiting situations are considered in § 5. 

The primary interest in model I1 is in its ability to undergo phase separation and to 
monitor this, we have calculated the spatial distribution function for like and unlike 
particles gRR(r), gDD(r) and gRD(r) [16]. These distributions 2ive the probability of 
finding a particle of a particular type at a distance r from a given particle. For example 

gRR(r) = NR(r)/N(r)xR, (28) 
where NR(r) is the average number of rod-like particles separated by r from a rod, N(r)  is 
the total number of lattice sites at the distance r and xR is the mole fraction of rods in the 
mixture. In the limit of a random mixture, gRR(r), as well as the other spatial distribution 
functions, are independent of r and equal to 1. In general, the unlike distribution 
functions are equal (gRD(r)=gDR(r)), and they are related to the like distributions by, for 
example, 

x,gRR(r) + x,gRD(r)  = 1. (29) 
For an equimolar mixture of rods and discs gRR(r) and gDD(r) are necessarily equal. In 
the limit of an infinite system separated into two pure phases, the unlike distributions 
vanish and the like distribution functions are equal and independent of r .  The value of 
the constant depends on the composition of the binary mixture and for an equimolar 
mixture takes the value 2. However, for the relatively small numbers of particles used in 
a simulation, gRR(r) is found to deviate significantly from this limit; for a layered system, 
it starts at small separations close to the value of 2 for an infinite system, but then 
decays rapidly to a value close to unity. The decay is not monotonic, but exhibits a 
structure which is characteristic of the lattice [16]. 

Finally, the orientational order in model I was characterized by calculating the 
singlet orientational distribution function for the total mixture at a single temperature 
T* of 0.6, using procedures described elsewhere [29]; this involved the analysis of one 
configuration every cycle of the production run. For model I,f(p) is an even function of 
cos p and so can be expanded in a basis of even Legendre functions as 

where the expansion coefficients], are the even rank order parameters PL [30]. 

30) 

5. Results and discussion 
We begin the discussion of our results with the global properties of model I in which 

the equimolar mixture of rods and discs is constrained to retain its uniform 
distribution. The temperature dependence of the heat capacity is shown in figure 1. This 
was calculated for the two system sizes (lo3 and 163) using various methods; the results 
are in close agreement and the cusp suggests a phase transition in the vicinity of T* 
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equal to 1.0k0.025. The shape of the temperature dependence and the insensitivity of 
C, to the system size suggest that the transition is not first order. However, C, does not 
exhibit a jump at the transition which would be expected for a second order transition 
and which is predicted by molecular field theory for this transition. Given the relatively 
small system size, we can only conclude from C, that the transition is higher than first 
order. We have also shown in figure 1 the heat capacity predicted by the molecular field 
theory with the temperature scaled to that at the transition. Within the nematic phase, 
there is remarkably good agreement between theory and simulation; this is less 
impressive in the isotropic phase where C, is predicted to drop to zero from the nematic 
phase and to remain at this value. Such failures of molecular field theories are not 
surprising and result from the short range orientational order in the isotropic phase 
which is not predicted by theory. 

The agreement between theory and the simulations for the transition temperature is 
not so good; thus T;, is found to be 1.0, whereas the predicted value is 1.5. This 
tendency of the molecular field approximation to yield transition temperatures which 
are far too large seems to be a common feature for phase transitions which are higher 
than first order [31]. In those other examples, the higher order character of the 
transitions stems from the two dimensional nature of the systems, but our result for a 
system in three dimensions suggests that the failure of the molecular field approxim- 
ation to predict the transition temperature stems from the higher order nature of the 
transition. The agreement is usually better for systems exhibiting a first order 
transition, albeit weak, as in the Lebwohl-Lasher model [20]. The failure of the theory 
to predict the transition temperature necessarily complicates the comparison of 

0.5 'I 
I 0.4 0.8 1.2 

T* 

Figure 1. The temperature dependence of the configurational heat capacity for model I. The 
results were obtained via fluctuations in the internal energy for lo3 (0) and 163 (0) 
particles; in addition, C, was determined from a least squares fit to the internal energy and 
subsequent differentiation (0). The prediction of the molecular field theory, with 
the temperature scaled to the transition, is shown as the solid line. 
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simulation and theory for the other properties which we have determined. To overcome 
this difficulty we shall, as for the heat capacity, scale the temperature occurring in the 
molecular field theory so that the transition temperatures match. 

The nature of the low temperature phase and the extent of the orientational order is 
available from the Q tensor for the total mixture. The tensor is found to be cylindrically 
symmetric within the statistical error, and the major order parameter for the molecular 
symmetry axes of both rods and discs is found to be negative; both of these findings are 
in agreement with the predictions of the molecular field theory. The temperature 
dependence of the order parameter P ,  for the global system is shown as the triangles in 
figure 2. The negative order parameter is seen to go continuously to zero at  the 
transition, as expected from its higher order character. In addition, the dependence of 
P ,  on temperature is essentially linear, which is an unexpected feature, at least for 
conventional nematics and their mixtures. Nonetheless, the molecular field theory is 
able to predict this unusual temperature dependence, as the dashed line in figure 2 
clearly shows. At low temperatures, theory predicts a slighiy less negative value for P ,  
than is observed in the simulations; we have no explanation for this small difference. 

The temperature dependence of the fourth rank order parameter of the mixture is 
shown in figure 3 as the open triangles. It is positive but small, as expected for a mixture 
where the molecules tend to align with their symmetry axes perpendicular to the 
director. Again in accord with the higher order nature of the transition, P, passes 
continuously to zero; in addition there is an unusual upward curvature of this order 
parameter with decreasing temperature. The molecular field theory is, however, able to 
account for this feature, as the dashed line in figure 3 clearly shows. 

0.5 

0 

i;;l , , , , , , j 
-O'8.25 0.5 0.75 1 1.25 

T* 
Figure 2. The second rank orientational ordering tensor for model I as a function of 

temperature; (0) major order parameter Q,, for the sub-lattice (0) biaxial order 
parameter Qxx-QYy for the sub-lattice and ( A )  major order parameter Q,, for the total 
system. The lines show the predictions of all three quantities obtained from the molecular 
field theory with the temperature scaled to that of the transition. 
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0.5 

0 

I I 
-0*8.!25 ' 015 0.75 1 1 

T* 
'5 

Figure 3. The temperature dependence of the fourth rank order parameter for model I obtained 
for (0) the sub-lattice and (A)  the total system. The predictions of the molecular field 
theory with the temperature scaled to the transition are shown as the solid and dashed 
lines. 

Information on both P2 and F4, as well as all of the higher rank orientational order 
parameters, is contained in the singlet orientational distribution function for the 
mixture. This was calculated at a scaled temperature of 0.6 with the result shown in 
figure 4. The maximum in f (p) at 90" is, of course, entirely expected, but it is still unusual 
for normal nematics where the molecular symmetry axes tend to be parallel to the 
director [32]. The distribution function for the mixture does contain a very small 
additional maximum when p is zero. In terms of the molecular interactions, the origin 
of the secondary maximum is obscure, although it is presumably related to the strong 
interaction between nearest neighbours which tends to keep their symmetry axes 
perpendicular. The expansion in equation (30) provides a good fit to the orientational 
distribution function when the series contains just four terms. The coefficients for these 
yield the order parameters F,  = - 0.195 f 0.003; P4 = 0.053 f 0.004; F6 = -0.0063 
f 0.002 and P,  = 0.0017 f 0.002. The quality of the fit with these four values is excellent 
as we can see from the distribution function calculated from them; this is shown as the 
solid line in figure 4. The error in the order parameter P ,  is rather high, but if this term is 
excluded, then the small maximum in f (p) at 0" is not reproduced, although the fit in all 
other regions remains excellent. The first two order parameters are in good agreement 
with those obtained from the Q and B ordering tensors where the statistics are far 
better; the results are P ,  = - 0.195 k 0.002 and P4 = 0.047 0.001. 

We turn now to the individual ordering ofthe rods and discs on the two sub-lattices. 
As we have noted for temperatures less than 0.7, the ordering tensors are equivalent, 
with the eigenvalue largest in magnitude positive, corresponding to a nematic phase 
which is made biaxial via its interaction with the particles on the neighbouring sub- 
lattice. The main directors for the biaxial nematics are orthogonal and so it is possible 
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O O  P 0.5 cosp 

Figure 4. The singlet orientational distribution function for model I calculated for the total 
system at T* ofO.6. The solid line shows the fit to equation (30) truncated after the first four 
terms. 

to think of the molecular field of one nematic being aligned orthogonal to the director 
of the other and hence creating the phase biaxiality, just as an external field can induce 
biaxiality in a single component system [33]. Above T* of 0 7 ,  the phase biaxiality 
associated with the particles on either lattice is found to approach its maximum value, 
so that two eigenvalues are essentially equal but opposite in sign, and the third is 
approximately zero. In addition, it was found that the ordering tensors for the rods and 
discs were not equivalent, but tended to oscillate out of phase with one another. The 
period for this oscillation appears to be of the order of several hundred cycles. In an 
attempt to see if this unexpected oscillatory behaviour was some artefact of the 
simulation as the transition to the isotropic phase was approached, we tried several 
modifications to the simulations. Thus, we increased the number of particles from lo3 
to 163; we used extremely long production runs amounting to 250000 cycles and we 
reduced the number of cycles between diagonalization of the Q tensor in case the 
director reorientation was occurring more rapidly as the order in the system was 
reduced. However, none of these measures altered the basic behaviour in which the two 
sub-lattices appear to exchange their order. In fact, a similar exchange of order between 
sub-lattices has also been reported by Kohring and Shrock [23] for their model in 
which there are only interactions between nearest neighbours. It seems likely that our 
system is behaving in an analogous manner because, at these higher temperatures, the 
interaction between next nearest neighbours is no longer sufficient to retain the 
conventional nematic order on the sub-lattices. If this is the case, then we may be seeing 
the retention of nematic order on one sub-lattice while the particles on the other simply 
fan out so that they satisfy the constraint of remaining orthogonal to their nearest 
neighbours. There is clearly no reason why the nematic order should be confined to one 
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sub-lattice rather than the other and so the order will exchange between the sub- 
lattices. Given that the order for the particles on the two sub-lattices must, on average, 
be the same, and because their order seems to oscillate out of phase, we have decided to 
average the major and biaxial order parameters for the sub-lattices at each macrostep. 
It is these averages which are reported in figure 2 above T* of 0.7 and it is presumably 
the exchange of order which is responsible for the rather high level of noise on the order 
parameters in this region. However, we should note that the individual values for the 
sub-lattices averaged over the production stage do not differ in any significant way 
from those found by first averaging the results for the two sub-lattices, provided, of 
course, that the production run is sufficiently long. 

The results for both the major order parameter Q% and the biaxial order parameter 
(Q!x-QFy) fall continuously to zero as the transition to the isotropic phase is 
approached. Below this transition, Qrz grows with decreasing temperature as we had 
expected. However, the biaxiality (QEx - QR ) first increases, passes through a 
maximum and then decreases with decreasing temperature. Such behaviour is 
analogous to that predicted and observed for the ordering of biaxial molecules in a 
uniaxial phase [24,34]. It results from essentially the same effect. As Qtz approaches its 
limiting value of 1, both QEx and Q;y must tend to the limiting negative value of -3 in 
order to ensure that the Q tensor is traceless; as this occurs, so the biaxiality must 
vanish. Another way of visualizing this dependence is to plot the phase biaxiality 
against the major order parameter, thus eliminating temperature; an entirely 
analogous plot is used in studies of molecular biaxiality in uniaxial phases [24,34]. Our 
data are plotted in this way in figure 5; they show that when QFz vanishes, so must the 
biaxiality (QEx - QFy). The results pass through a maximum when Q:z is just less than 
0.5 and then decrease to approach the other limiting case when Q:z is unity and the 
phase biaxiality must again vanish. 

Both representations of our results can be used to provide a further test of the 
molecular field theory which we have developed. The biaxiality plot shown in figure 5 
provides a less searching test of the theory, because temperature has been eliminated 
from the comparison and so the failure of the theory to predict TN, is not apparent. The 
curve given in the figure was obtained from the molecular field theory and it is clearly in 
very good agreement with the results obtained from the simulation. In contrast, the 
theory is not able to fit the temperature dependence of the order parameters unless we 
compensate for its failure to predict the transition temperature by scaling the 
temperatures to this point. If we do this then we obtain the two curves shown in figure 2 
which are again in extremely good agreement with the simulation. Indeed, the quality 
of this fit can be taken as some justification for our apparently ad hoc procedure of 
averaging the ordering tensors for the two sub-lattices. 

The final quantity which we have calculated to probe the single particle order of the 
sub-lattices is the major fourth rank orientational order parameter Fe This was also 
determined by averaging the results for the two sub-lattices, and the results are shown 
as a function of the scaled temperature T* in figure 3. As we have come to expect, this 
passes continuously to zero at the transition and the temperature variation has a slight 
upward curvature. This behaviour is entirely in keeping with the molecular field theory, 
as the theoretical prediction shown as the solid line in figure 3 clearly demonstrates. 

We now consider the results for the orientational correlation functions GL(r); these 
were calculated for model I containing lo3 particles at the five temperatures 0.4,0.6,0.8, 
1-0 and 1.25 with the results shown in figures 6 (a)-6 (e), respectively. In these the values 
of the second rank correlation function C,(r) are denoted by squares and those for the 
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0.5 ~ 

Figure 5. The dependence of the second rank phase biaxiality parameter (Q,,-Qyy) on the 
major order parameter Q,, for a sub-lattice. The dotted line shows the prediction of the 
molecular field theory. 

fourth rank G4(r) are denoted by triangles. To appreciate the significance of our results 
it is instructive to consider a number of limiting situations. In the limit of the perfectly 
ordered ground state for like particles, G,(r) and C4(r) are unity independent of r and for 
unlike particles G2(r) is -3 and G4(r) is 3/8, again independent of r. This difference in 
behaviour for the correlations between like and unlike particles, together with the fact 
that r2 for like particles is even, but odd for unlike particles means that both G,(r) and 
G4(r) are expected to exhibit a pronounced alternation. This, in itself, is of little physical 
significance, and in considering the correlation functions we shall confine our attention 
either to those for like or those for unlike particles. In the limit of large separations, 
when all direct angular correlations are lost, the correlation functions are related to the 
single particle order parameters. Thus, by using the spherical harmonic addition 
theorem 

lim G , A B ( r ) = C ( - ) " ' C ~ , , ~  -m, 
r - tm  m 

where C,,(o) is a modified spherical harmonic and Ci,, is the ordering tensor for a 
molecule of type A. In a phase composed of uniaxial particles subject to a uniaxial 
ordering potential the C,, vanish unless m is zero and so C35j 

lim GtB(r) = Ptp"L 
r - m  

For a single component system the limiting value of CL(r)  provides a valuable route to 
the single particle order parameter FL as shown by Zannoni [27]. This does not prove 
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to be the case for our system, for although the particles are cylindrically symmetric, they 
are subject to a biaxial ordering potential and so 

Here, the presence of these biaxial terms removes the formal use of GiB(r) to obtain the 
order parameters. Nonetheless the additional terms are often small and we can obtain a 
useful check on the values of F t  and p7: from the limiting value of G;fR(r). 

At the lower temperature of 0.4, the behaviour of the second rank correlation 
functions for both like and unlike particles is in general accord with the description we 
have just given (see figure 6(a)). For like particles, G,(r) is both large and positive; it 
decays rapidly, that is within a few lattice spacings, to a plateau value which is 
consistent with the major and biaxial order parameters determined at this temperature 
for the particles on individual sub-lattices. In fact the contribution of the biaxial terms 
to the plateau value is rather small in comparison with that from Pi;  the values are 
0.008 and 0.574 which combine to give a limiting plateau value of 0.582 in good 
agreement with the observed value of 0.589. Unlike particles tend to be orthogonal to 
each other and so G,(r) is negative; though unlike particles have a stronger interaction 
than like particles, the decay to the plateau value also takes place within a few lattice 
spacings, as for like particles. Again the biaxial terms make a moderate contribution to 
the plateau value of G2(r); the values now are -0.056 in comparison with -0.347 
coming from the e E  term; this gives a total of -0.403 which is in equally good 
agreement with the observed value of - 0.396. The fourth rank correlation functions 
for like and unlike particles are both positive as we had anticipated. They are 
significantly smaller than their second rank counterparts, presumably because of the 
larger number of nodes in P,(cos /3) than P,(cos p). It is this significant reduction from 
the ground state limit which may well cause the correlation functions for like and unlike 
particles to be so similar. Again the G4(r) decay to their limiting values within a few 
lattice spacings. We are not able to calculate the value of the plateau because we do not 
have the fourth rank order parameters which reflect the departure of the phase from 
cylindrical symmetry. However, for like particles, the contribution of the term to the 
plateau is 0.202; the observed value is 0.233 which suggests that the biaxial 
contributions are somewhat small. This may not be the case for unlike particles; indeed, 
ignoring any biaxiality leads to a value of 0.076 which is significantly smaller than the 
value extracted from the simulation of 0.176. 

As the temperature is increased and the transition to the isotropic phase 
approached, so we expect and observe that the orientational correlations decrease in 
magnitude (see figure 6). Such reductions are clearly far more pronounced for the fourth 
rank correlation functions; indeed, they adopt quite small values in keeping with the 
low values of the fourth rank single particle order parameter. In consequence, they may 
not be of particular value in studying the molecular organization in a mesophase. The 
changes in the limiting values of the second rank orientational correlation functions 
prove to be entirely in keeping with the reduction in the major order parameter and the 
modest variation in the biaxial order parameter. At short range, the correlation 
functions for both like and unlike particles deviate from their long range limit; indeed, 
the magnitude of this deviation is a measure of the validity of the molecular field 
approximation for the system. From the plots in figure 6, the deviations seem to be 
rather small, although they increase with increasing temperatures as the transition is 
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rz 
(4 

Figure 6. The distance dependence of the orientational correlation functions G,(r) for L = 2 (0) 
and L = 4 ( A )  calculated for model I at temperatures T* of (a) 0-4, (b)  0 6 ,  (c) 0-8, ( d )  1.0 and 
(e) 1.25. 

approached, but then decrease in the isotropic phase with further increases in 
temperature. Such variations in the excess angular correlations have also been 
observed for the Lebwohl-Lasher model [20]. 

Our simulations of model I clearly demonstrate the biaxiality of the nematic phases 
formed by the rods and discs confined to the two sub-lattices; indeed, it is this 
confinement in a uniform mixture which creates the biaxility. We now come to the 
results for model I1 in which this constraint is no longer imposed and phase separation 
becomes possible. To study this possibility we have monitored the distribution of the 
two components within the mixture by calculating the spatial distribution functions for 
like and unlike particles, gRR(r) and gRD(r), respectively. Initially, however, we wished to 
explore the state of the system by evaluating the distribution functions, gRR( 1) and 
gRD( l), for the nearest neighbour separation as a function of temperature and the results 
of our calculations are shown in figure 7. For a finite system of lo3 particles separated 
into two layers of pure discs and pure rods, gRR( 1 )  takes the value 1.86 and gRD( 1 )  is just 
0.14 [16]; at the other extreme of a uniform mixture, both spatial distribution functions 
are unity. The simulation results show that at low temperatures the mixture is indeed 
separated into two pure phases, one composed of rods and the other of discs. This 
situation is stable until a temperature of about 0.5; at this point gRR( 1) starts to decrease, 
while gRD(l )  increases. These changes signal a variation in the composition of the 
separate phases with rods progressively dissolving in the disc rich phase and vice versa. 
This process continues until, at a temperature of approximately 1.25, gRR(l )  and gRD(l )  
are both unity and the two mixtures have the same composition. In other words, a 
homogeneous phase has been formed. Such changes in the composition of the 
coexisting phases with temperature for an equimolar mixture appear to be in 
qualitative agreement with the predictions of molcular field theory [ l 5 ] .  
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Figure 8. The distance dependence of the spatial distribution functions (0) gRR(r) and (0) gRD(r) 
for model I1 evaluated at the temperatures (a) 02, (b)  0.4, (c )  0.6, ( d )  0 8  and (e) 1.0. 
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To describe the nature of the phases in more detail, we show in figure 8 the two 
spatial distribution functions gRR(r) and gRD(r) for selected temperatures of 0*2,0.4,0.6, 
0 8  and 1.0. The distribution functions observed at low temperatures appear to exhibit a 
scatter in the data. However, this does not result from statistical error, but rather from 
the finite size of the sample. Indeed the two distribution functions which we have 
observed at T* of 0 2  are identical to those calculated for two slabs of pure discs and 
pure rods each containing 500 particles [ 161. This comparison also confirms that the 
decrease in the distribution function gRR(r) with increasing separation does not result 
from an increase in the number of discs in the mixture, but rather from the finite size of 
the system. At the higher temperature of 0-4, the distribution functions have not 
changed to any significant extent and the system still consists of two pure phases. There 
is, however, a change in the distribution functions at the slightly higher temperature of 
0.6. First, gRR(r) has decreased in magnitude while gRR(r) has increased, and secondly, 
the structure on the distributions has been reduced. These changes are associated with 
the creation of a phase rich in rods but containing some discs and vice versa. Such 
changes continue with increasing temperature, and this is certainly apparent at T* of 
0.8, although the deviation of gRR(r) and gRD(r) from unity suggests that the mixture is 
still not uniform. The formation of this uniform mixture appears to have taken place by 
T* of 1.0 now both spatial distribution functions are essentially independent of the 
separation and equal to unity. There are, however, the remnants of some structure at 
short range which hints at the slight preferential attraction of rods rather than discs by 
another rod. 

The temperature dependence of the spatial distribution functions suggests that 
there is a transition from a phase separated system to a uniform mixture of rods and 
discs at a temperature somewhere between 1.0 and 1.25. In order to locate the transition 

4 

C"ikB 

3 
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I I I 
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Figure 9. The temperature dependence of the configurational heat capacity evaluated for 
model I1 from (0) fluctuations in the internal energy and (0) differentiation of the internal 
energy with respect to temperature. 
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more accurately as well as to probe its nature, we have calculated the heat capacity as a 
function of temperature, with the results shown in figure 9. There is clearly a peak in C, 
at 1.050f0.025, but the lack of divergence, which is found, for example, for the 
Lebwohl-Lasher model [ZO], suggests that the transition is of second or higher order; 
this is in accord with the molecular field predictions for an equimolar mixture of rods 
and discs [ls]. The theory also predicts that the transition temperature should be 0.9 
times that of the pure system; for our model 11, there are no results for the transition 
temperature of the pure system in which the interactions extend over two shells of 
neighbours. For the Lebwohl-Lasher model, the interactions are confined to nearest 
neighbours on a simple cubic lattice and TA, is 1.127. However, Luckhurst, Romano 
and Simpson have extended this model to include three shells of neighbours in which 
the interaction decays as r - 6  and find T& of 1.54k0.02 [36]. Interpolating between 
these values using the coordination number weighted sum of Y - ~  for the shells of 
neighbours gives TA1 of 1.44 for a pure system in which nearest and next nearest 
neighbours interact. Accordingly, the theory developed by Palffy-Muhoray et al. [ 151, 
predicts a phase separated nematic-isotropic transition temperature of 1.30, which is 
somewhat greater than that given by our simulation of 1.05. 

The heat capacity data in figure 9 also reveals another weak maximum at a 
temperature of approximately 0.75. This coincides with the point at which the 
compositions of the coexisting phases are changing most rapidly (see figure 7). Such 
variations in the composition will result in corresponding changes to the internal 
energy and hence, to an additional feature in the temperature dependence of the heat 
capacity. This interpretation of the additional peak in the heat capacity is certainly 
consistent with the temperature dependence of the orientational order in the mixture, 
as we shall now see. 

The second and fourth rank orientational order parameters were calculated for the 
individual components and the total mixture by using the appropriate Q and B tensors. 
This allowed us to determine both the symmetry of the coexisting phases as well as the 
orientation of the directors for these and that of the mixture. For an infinite system, the 
directors of the coexisting phases would be unrelated and so the director for the mixture 
would be devoid of any physical significance. However, for the finite system studied in 
this simulation, there is a significant interaction between the rods and discs across the 
interface of the coexisting phases. This feature is further enhanced by the periodic 
boundary conditions, because the interface is at the centre of the simulation box and 
parallel to the xy face. Thus, for example, the phase consisting largely of discs is 
bounded on either side by that composed largely of rods. We might anticipate, 
therefore, that the directors for the coexisting phases will in fact, be correlated. This 
proves to be the case, for we have found that the directors are orthogonal and, in 
consequence, the director for the complete mixture is well defined and perpendicular to 
those of the coexisting phases. In addition, the Q tensors for the individual components 
reveal that the coexisting phases are essentially cylindrically symmetric and so their 
orientational order can be characterized by the order parameters P ,  and P,. Further, 
these r>rder paranieters for the two components are observed to be equivalent as indeed 
they should be. The results for P2 of one component and of the mixture are given in 
figure 10 as a function of temperature. At the lowest T", the orientational order in the 
coexisting phases is seen to be practically complete and P2 is almost unity. As the 
temperature increases, so P2 decreases until T* is about 05,  at which point there is an 
increase in the rate of decrease; this can be attributed to the change in the composition 
of these phases. Thus, for example, as the concentration of discs in the phase which is 
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rich in rods grows, so the mean anisotropic interaction, or potential of mean torque, 
acting on a rod will diminish and the associated order parameter will fall. Since the 
internal energy is quadratic in F,, at least in the molecular field limit, we expect a 
change in its slope which is then reflected by the maximum in the heat capacity at T* of 
0.75. As the temperature is further increased, so P ,  continues to fall both as a result of 
the increase in T* and the increase in the concentration of unlike species in the phase 
rich in the other component. As a consequence of these changes, the order parameter P ,  
appears to pass continuously to zero at a temperature of about 1.0, in accord with our 
previous observation that the transition is of second or higher order. 

At the lowest temperatures, when the coexisting phases are essentially pure discs 
and pure rods the order parameter for the mixture should be simply related to that of 
the phases. This situation obtains because the two phases are uniaxial and their 
directors are orthogonal. For the case of the second rank order parameter, F, for the 
mixture should be just -4 that of a coexisting phase. This relationship holds quite well 
until T* is about 0.75 and then there is an increasing deviation from this prediction, 
with P ,  for the mixture being less negative than anticipated. This departure results from 
the way in which we have defined the order parameters for the coexisting phases. Since 
it is a difficult task to monitor the spatial extent of these phases, we have identified their 
order parameters simply as those of the two components. This is likely to be a 
reasonable approximation, as long as the two phases are rich in their respective 
components. When this ceases to be the case, then the significance of the order 
parameters for the components tends to be lost, especially as the same component in 
the different phases will be ordered with respect to directors which are orthogonal. The 
only well-defined quantity is then the order parameter for the total mixture. 

The corresponding results for the fourth rank order parameter are given in figure 1 1 
and they reflect the behaviour found for the second rank order parameter. Thus, the 

T* 

Figure 10. The dependence on temperature of the second rank order parameter P ,  for (U) the 
individual components and ( A )  the total system. 
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I 
I I I 

0 0.5 1 1.5 -0.5 ' 
T* 

Figure 11. The variation with temperature of the fourth rank order parameter p4 for (0) the 
individual components and ( A )  the total system. 

value of P4 for the components is close to unity at the lowest temperature. It then 
decreases, albeit more rapidly than &, with a change in slope at T* of about 0.5, before 
passing continuously to zero at a temperature of approximately 1.1. As we have seen 
this corresponds to the second or higher order transition from the phase separated 
nematic to the uniform isotropic phase. The total fourth rank order parameter for the 
mixture is also related to those of the components and, by analogy with the geometric 
transformation for P,, the value of P4 for the mixture should be just 3/8 that for the 
individual components; here we use the result 

P,(cos 90') (34) p p t u r e  = pLomponent 

obtained via the spherical harmonic addition theorem. At the lowest temperatures, this 
prediction is obeyed quite accurately because the coexisting phases are essentially pure. 
However, at T* of about 0.75, F4 for the mixture begins to depart from this 
relationship, because the composition of the coexisting phases begins to change 
dramatically. As for the second rank order parameter, the only quantity of significance 
under these conditions is P4 for the total mixture. 

6. Conclusions 
Here we bring together the main conclusions of our Monte Carlo simulation study 

of an equimolar mixture of rods and discs. We have developed two models for this 
mixture; in model I the rods are confined to the sites of one sub-lattice and the discs to 
those of the other, thus representing a uniform mixture for which phase separation is 
unable to occur. For model I1 exchange of particles between lattice sites is allowed and 
so phase separation can occur. For model I we observe a second or higher order 
transition between an orientationally ordered and an isotropic phase. The overall 
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symmetry of this nematic phase is uniaxial, although the two nematic phases with the 
sub-lattices of rods and of discs are biaxial. The major and biaxial second rank order 
parameters characterizing these phases are in good agreement with the predictions of a 
molecular field theory provided allowance is made for the failure of the theory to 
predict the nematic-isotropic transition temperature. At low temperatures, the 
ordering tensors for the particles on the two sub-lattices are identical, but as the 
temperature is increased, so they become unequal at any instant and the extent of the 
order is exchanged between the sub-lattices in an oscillatory manner. This unusual 
behaviour occurs because the term in the anisotropic potential between particles on the 
same sub-lattice becomes relatively unimportant at higher temperatures and the 
potential is dominated by that between particles on neighbouring sub-lattices. When 
the constraint on the exchange of particles is relaxed, the system separates into two 
coexisting uniaxial nematic phases. As a result of the finite size of the system, there is a 
significant interaction of rods with discs across the interface of the coexisting phases 
and as a result the directors for these are orthogonal. At low temperatures the phases 
are composed essentially of discs or of rods, but the composition of the two phases 
changes with increasing temperature at an ever increasing rate. This change in 
composition is clearly discernible via the temperature dependence of the orientational 
order parameters for the coexisting phases and the total mixture, as well as in the heat 
capacity. Unlike model I, the orientational order for the two components in model I1 
is always identical. The coexisting nematic phases eventually undergo a second or 
higher order transition to a uniform isotropic phase. The behaviour of model I1 is in 
good qualitative agreement with the predictions of the molecular field theory for such a 
system. 
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